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Abstract—The steps toward all over IP have defined to the
IP Multimedia Subsystem (IMS) as the de facto technology for
end-to-end multimedia service provisioning in 5G. However, the
unpredictable growth of users in 5G requires to improve IMS
scalability to handle dynamic user traffic. Several works have
addressed this issue by introducing auto-scaling mechanisms in
virtualized IMS (vIMS) architectures. However, the current vIMS
deployments use monolithic designs that do not allow finer-
scalability. In this paper, we present µvIMS, an architecture that
uses microservices to provide finer-scalability and more effective
resource usage than regular monolithic design. To test our
architecture, we evaluate µvIMS prototype regarding CPU usage,
RAM usage, Successful Call Rate (SCR), and latency metrics.
Our test results reveal that µvIMS achieves a higher SCR,
using the available resources effectively with a negligible latency
increasing. Thus, we can state that dividing the monolithic vIMS
architecture in microservices allows providing finer-scalability.

I. INTRODUCTION

The IP Multimedia Subsystem (IMS) is a telco-architecture
intended to provide voice and multimedia IP services regard-
less of access networks [1]. Some IMS relevant features are
openness, interoperability, and support of trending technolo-
gies, such as VoLTE, VoWiFi, and WebRTC [2], [3]. Consid-
ering these features, the ETSI (European Telecommunications
Standards Institute) has decided to continue using IMS in the
5th Generation (5G) networks for provisioning multimedia
services [4]. Since in 5G the user traffic will be dynamic,
IMS must be adapted to such dynamism [5]. Current IMS
deployments have scalability issues because their architectural
core components usually are deployed over network appliances
or monolithically. These appliances make it difficult to scale
the architecture capabilities effectively because Network Func-
tions (NFs) are tied to specific hardware. In turn, a monolithic
IMS implicates the assignment of resources to a group of
Virtualized Network Functions (VNFs), avoiding to achieve
a finer-scalability (i.e., scale a specific function to handle
particular network traffic).

Several works use Network Functions Virtualization (NFV)
[6], [7] to deal with IMS scalability problem obtaining virtual-
ized IMS (vIMS) and supporting its operation with additional
systems [5], [8]. In [5], the authors use a framework that
monitors the quality offered by a vIMS, and they scale it
regarding network conditions (e.g., service execution times and
available bandwidth). In [8], the authors add an autoscaling
mechanism that considers several vIMS metrics (e.g., resource
usage, number of requests, and latency), allowing to scale

depending on user traffic. However, the authors use a mono-
lithic architecture avoiding finer-scalability and failing in using
available resources efficiently.

To deal with vIMS monolithic architectures, in the last
years, the concept of microservices has been used [9], [10].
The microservices are an architectural model that divides a
monolithic application into different components, each one
of them with specific functionality [11]. Since these com-
ponents are smaller than the monolithic application, it is
easier to add and delete microservices instances [12], allowing
to achieve finer-scalability. In [9], the authors provide IMS
registration, authorization, and authentication processes as
services using microservices. In [10], the authors present a
microservice-based vIMS for cloud computing, in which the
main IMS components are inside of a single microservice.
Their microservice-based architecture uses an orchestrator and
a load balancer for automatic horizontal scaling (i.e., addition
and releasing of microservice instances to improve architecture
capabilities). In summary, to the best of our knowledge, the
microservice-based vIMS solutions proposed in the literature
consider a limited number of IMS processes or do not divide
the IMS functions efficiently, which unfollow the microservice
design, avoiding to achieve finer-scalability.

In this paper, we introduce µvIMS, a microservice-based
vIMS architecture that aims to provide finer-scalability in
5G networks. By microservices, our architecture offers finer-
scalability, allocating resources just in the necessary IMS
functionalities. In µvIMS, we decompose the IMS core in
microservices and use elements from the MicroService Archi-
tecture (MSA) to ensure security, reliability, and manageabil-
ity. We implement a µvIMS prototype using Clearwater and
Kubernetes. We analyze the performance of µvIMS prototype
comparing it with a vIMS. In such comparison, we evaluate
the capability of µvIMS to handle a higher number of users
with the same amount of resources, measuring the Successful
Call Rate (SCR) for an increasing Calls Per Second (CPS)
number that simulates unpredictable traffic. The evaluation
results reveal that µvIMS reached a higher SCR using a similar
amount of resources, and with an acceptable latency increas-
ing, showing the feasibility of providing finer-scalability and
allocating resources effectively.

The main contributions presented in this paper are:
• A microservice-based vIMS design for facing IMS scal-

ability issues.
• A microservice-based vIMS prototype that follows the
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described design.
• The demonstration that our architecture is feasible to

provide finer-scalability for IMS and to attend more users
with the available resources.

This paper is organized as follows. Section II describes
related work. Section III introduces a motivation scenario. Sec-
tion IV describes the µvIMS architecture. Section V presents
the µvIMS prototype and its comparison with vIMS. Finally,
Section VI provides conclusions and implications for future
works.

II. RELATED WORK

Several works have addressed the IMS scalability issues
taking into account different technologies and methods. In the
work [8], the authors present a comparison between two auto-
scale mechanisms for vIMS. The first one is based on VM
(Virtual Machine) metrics (CPU and RAM usage). The second
mechanism is based on VNF metrics, such as resource and
network usage, TCP connections, number of call drops, and
Session Initiation Protocol (SIP) requests. As a comparison
result, the authors determine that the use of VNF metrics
is the best way to scale vIMS. In [5], the authors pro-
pose an NFV-compliant quality audit and resource brokering
framework. This framework allows scaling IMS according to
user traffic and allocating the resources in different cloud
platforms. The authors analyze their proposal deploying a
vIMS integrated with their framework in a test-bed over a
real hybrid private/public cloud. The above proposals share
the same shortcoming; they have IMS monolithic architecture
designs, which do not allow finer-scalability and implies a
less specific resource allocation that leads to waste resources
in scaling functions unrelated to traffic.

In the literature, few works use microservices design pattern
in IMS architecture. In [9], the authors propose an approach to
achieve an optimal VNF design using microservices. With this
approach, the authors introduce IMS-as-a-Service that provides
IMS registration, authorization, and authentication as a service.
The authors tested IMS-as-a-Service comparing it with a non-
microservice vIMS. As a result, IMS-as-a-Service reached a
higher number of successful calls and better performance in
resource utilization. The authors focus on IMS registration,
authorization, and authentication processes, and they do not
consider complete IMS core functionalities. The work [10]
describes an architecture for the elastic implementation of
vIMS based on microservices for cloud computing. The au-
thors allocate the Home Subscriber Server (HSS) information
in microservices databases. Besides, they compare their im-
plementation with a vIMS without microservices regarding
call establishment delay and conclude that their architecture
maintains similar results to regular IMS. However, the authors
implemented the Call Session Control Functions (CSCFs) into
a single microservice, avoiding finer-scalability. Thus, it is not
possible to allocate resources in the specific functions that
handle the traffic.

In summary, in order to improve resources usage, vIMS
architecture needs finer-scalability and specific resource al-

location. Our µvIMS addresses this issue distributing the
main IMS functionalities into microservices efficiently. This
distribution allows scaling just the necessary functions in order
to provide IP Multimedia services to a higher number of users
with the available resources.

III. MOTIVATION

In 5G networks, IMS provides voice and multimedia IP
services with CSCFs [4]. These CSCFs are: Proxy-CSCF
(P-CSCF), Serving-CSCF (S-CSCF), Interrogating-CSCF (I-
CSCF). P-CSCF is the first contact point between users
and IMS, which validates requests and routes them to their
destination. S-CSCF manages the multimedia session, registers
users, and forwards requests to the correct IMS element. I-
CSCF verifies users profile, assigns the user to an S-CSCF,
and routes requests to other IMS networks.

Now, let us consider the next scenario: a telco-operator
enterprise has an IMS that provided voice service in a region
for several years. After analyzing other telco-operators, the
enterprise concludes that they must provide 5G services (e.g.,
telemedicine, and Internet of Things) to remain competitive.
The implementation of these services is successful, but after
a while, the telco operator customers complain about 5G
services continually fail. The enterprise analyzes the problem
and discovers that its IMS unsuccessfully tries to handle traffic
with unpredictable peaks introduced by these 5G services.
Thus, the telco-operator needs to improve its IMS capabilities.

In the previous scenario, the telco-operator has an IMS that
cannot handle unpredictable traffic because it does not scale
efficiently. A solution for this scenario may be to virtualize
its IMS and use an additional system for automatic scalability
[5], [8]. However, this solution uses a monolithic IMS archi-
tecture that implies a less specific resource allocation when
it is scaled. The telco-operator can use microservices to deal
with this monolithic architecture, but the current approaches
[9], [10] do not implement the IMS functions needed for
multimedia session control or do not provide specific resource
allocation. In µvIMS, we divide the CSCFs into seven inde-
pendent microservices that provide the full multimedia session
control. This division allows scaling the microservices with the
functions that are handling the incoming traffic, using better
the available resources to handle more users.

IV. A µVIMS ARCHITECTURE

µvIMS is an architecture based on microservices and de-
signed to improve IMS scalability in 5G. Microservices offer
the ability to allocate resources in the functions needed to
handle traffic, leading to finer-scalability and reducing unnec-
essary resource usage. Figure 1 depicts the µvIMS overall
view that includes two kinds of components: CSCF Microser-
vice Cluster and Enhancing Elements. CSCF Microservice
Cluster performs the CSCF with microservices. Enhancing
Elements maintain the proper operation of these microservices
performing microservice registry, microservice management,
and interoperability with outside elements (e.g., 5G Networks,
User Entities, Application Server, and HSS).
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Fig. 1: Overall µvIMS Architecture

In the next subsections, we describe the functional division
of the CSCFs into microservices. Afterward, we present the
Enhancing Elements. We use the Enhancing Elements that we
found in the literature [13], [14], [15], and we propose new
ones to provide interoperability and security.

A. CSCF Microservice Cluster

This Cluster uses microservices to build up the CSCFs
responsible for multimedia session control of users and Appli-
cation Servers (ASs). These microservices offer to µvIMS the
following characteristics. First, the CSCF functional division
maintains an adequate size. Note that large-size microservices
group many functions, returning to monolithic design. Small-
size microservices decouple functions heavy dependent of
each other, resulting in additional management complexity
[9], [16]. Second, the CSCF functional division maintains data
independence because each microservice has its own database,
a centralized database implicates losing independence [10].

Figure 2 describes the decomposition of CSCF into mi-
croservices. In this division, we provide in each microservice
a complete and independent functionality based on CSCF
specified by the 3rd Generation Partnership Project (3GPP) [4].
We divided the P-CSCF into two microservices: Forwarding
SIP Messages and Ensure Access Policies. Forwarding SIP
Messages microservice is responsible for routing SIP mes-
sages generated by outside elements (e.g., traditional phone,
softphone, and WebRTC), ensuring that the SIP messages
have the correct format, as well as detecting and routing
emergency sessions requests. The Ensure Access Policies
microservice manages operator policies in architecture access.
This microservice stores operator policies in its database and
provides them to Forwarding SIP Messages microservice to
ensure routing SIP messages according to operator policies.

We divide the S-CSCF into four microservices: User Reg-
istry, Ensure Multimedia Session Policies, Multimedia Ses-
sion Control and Manage IMS Multimedia Priority Service
(MPS). The User Registry microservice is responsible for
authorizing the user registry in the architecture, grouping
I/S-CSCF registry functions. Furthermore, it translates the
E.164 address (i.e., globally unique number for each device
in the Public Switched Telephone Network) required for some

type of user registries. This microservice needs a database
to store user information. The Ensure Multimedia Session
Policies microservice manages operator policies in multimedia
session control. This microservice attests subscriber identity if
it is configured through operator policies. Ensure Multimedia
Session Policies microservice stores the operator policies into
its database and provides these policies to Multimedia Session
Control microservice.

The Multimedia Session Control microservice provides the
main functionalities of the S-CSCF related to the multimedia
session control. These functionalities include start, mainte-
nance, and end multimedia sessions. We group the multimedia
session control of user with user and user with AS into a single
microservice because they are heavily dependent on each
other. For example, a call between two users could include AS
interaction for redirecting, voice mail recording or blocking
unwanted users. The usage of two microservices for each
sort of multimedia session implies additional network traffic
and logic to communicate them and provide session control.
With the purpose that each microservice provides complete
functionality, the Multimedia Session Control microservice
handles any type of session. Furthermore, this microservice
has its own database to handle user information.

Manage IMS MPS microservice handles IMS MPS by
providing preferential access treatment to priority users when
congestion on the net is blocking the session establishment. In
this sense, this microservice validates if a user is authorized
for priority service by AS, includes priority level in the user
request and forwards it. The Manage CDRs microservice
manages Call Detail Records (CDRs), grouping P/I/S-CSCF
logic associated with CDRs. This microservice recollects CDR
from other microservices and generates standardized CDRs
that stores in its database, and sends to an external billing
entity.
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Fig. 2: CSCF Microservice Cluster

B. Enhancing Elements

Figure 3 presents the Enhancing Elements that provide
security, reliability and microservice management namely Ser-
vice Discovery, Orchestrator, Infrastructure Manager, Cir-
cuit Breaker, API Gateway, Microservice DataBase Updater
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(MDBU), and Load Balancer. The Service Discovery is a
register element that supports microservices communication.
It includes the Register&Discovery and Authenticator com-
ponents. The Register&Discovery component stores and pro-
vides microservice addresses. These addresses are URIs that
point an IP address necessary for the forwarding of traffic
to the microservices. To guarantee security in microservices
addresses provision, we propose a new Service Discovery
component called Authenticator. This new component verifies
that the element that requests a microservice address is trusty.
Authenticator could be implemented with several options. For
example, a basic key-password verification system.
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The management elements are Orchestrator, Infrastructure
Manager, and Circuit Breaker. Orchestrator and Infrastructure
Manager are adapted the functionalities of three entities of
NFV-MANO [17]: Virtualized Infrastructure Manager (VIM),
VNF Manager (VNFM) and NFV Orchestrator (NFVO). Or-
chestrator adapts the functionalities of VNFM and NFVO.
In this sense Orchestrator manages the microservices life
cycle independently of infrastructure by replicating, migrating,
initiating, pausing and removing microservices instances. In
this sense, the network administrator can easily managing mi-
croservices using Orchestrator without manual infrastructure
interaction.

The Infrastructure Manager adapts the VIM functionalities.
Thus, it interacts directly with the infrastructure resources (i.e.,
computing, storage, and networking) of each machine where
we deploy the CSCF Microservice Cluster. Infrastructure
Manager receives management orders from Orchestrator and
performs them in the CSCF Microservice Cluster. Thus, the
Infrastructure Manager decides where to allocate a microser-
vices according to the available resources. Additionally, when
a machine fails, Infrastructure Manager deploys microservices
that ran on it within another available machine.

Circuit Breaker provides reliability to the CSCF Microser-
vice Cluster by handling the microservices failures. When
a microservice failure occurs the Circuit Breaker records it.
After the number of failures recorded by Circuit Breaker
exceeds a threshold configured by the network administra-
tor, Circuit Breaker determines that it is necessary to reset
the failure microservice instance. Then, the Circuit Breaker

indicates to the Orchestrator which microservices instances
reset. If the failure persists, the Circuit Breaker concludes
that the failure could not be managed just by resetting the
microservice instance. Therefore, this component indicates
to the API Gateway to stop outside traffic and informs the
network administrator about the microservice failure.

API Gateway, Load Balacer and MDBU are interoperabil-
ity elements that allow secure microservice communication
with outside elements such as User Entities, 5G, and Others
Networks. The API Gateway is an element that prevents
unauthorized access to the CSCF Microservice Cluster. When
the API Gateway ensures reliable access with an authentication
mechanism, it distributes the traffic between CSCF Microser-
vice Cluster and outside architecture [18]. Load Balancer is an
element that improves architecture capabilities by distributing
traffic between microservice instances. Load Balancer uses an
algorithm to distribute traffic, such as randomized, round-robin
or greedy. The distributed traffic comes from external elements
as User Entities or internal elements as other microservices.

MDBU is a new Enhancing Element that shares information
between microservices databases and actualizes them with the
HSS (i.e., the principal repository to store an retrieve infor-
mation of users). HSS cannot be divided into microservices
databases because 5G and other networks use it. With this
element, our architecture does not affect other networks by
modifying the HSS. The MDBU performs HSS synchroniza-
tion by two steps: (i) it monitors the HSS looking for changes,
(ii) it actualizes the microservices databases when the HSS is
updated.

V. EVALUATION

To evaluate our architecture, first, we implemented a µvIMS
prototype. Second, we built a test environment to compare
our architecture with vIMS without microservices. Third, we
performed tests regarding SCR, resource usage, and latency.

A. Prototype

We use Clearwater to implement our CSCF Microservice
Cluster modifying its architecture according to our design
(modifications are explained in the next paragraph). Clear-
water [19] is a widely used open-source IMS core designed
for cloud environments that follows IMS core standardized
interfaces. Clearwater has two kinds of deployment, one over
VMs and other over Docker containers. Clearwater-over-VM
deployment follows a monolithic approach, where a single
component allocates several Clearwater-over-Docker compo-
nents. Table I shows the components of both deployments
and their functionalities. In Clearwater-over-Docker deploy-
ment, each component is implemented over a single container.
Also, these components are similar to microservices of CSCF
Microservice Cluster. Thus, we adapt Clearwater-over-Docker
components by using or dividing them to obtain µvIMS
prototype.

We implement Forwarding SIP Messages microservice us-
ing Bono. In turn, we use Ralf to implement Manage CDRs
microservice. Clearwater-over-Docker uses Sprout, Cassandra
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TABLE I: Clearwater division

Clearwater-over-VM Clearwater-over-Docker Functionality
Ellis Ellis Web-based provision portal for user sign-up, password management, and control of service settings.
Bono Bono SIP edge proxy that performs P-CSCF functionalities.
Sprout Sprout SIP register and authorization routing proxy which perform I-CSCF and S-CSCF functionalities.
Homer Homer XML Document Management Server (XDMS) that stores user services settings.

Dime
Ralf HTTP API to recollect billable events from Bono and Sprout.

Homestead Interface to provide communication between Sprout and Cassandra.
Homestead-prov Interface to provide communication between Ellis and Cassandra.

Vellum

Astaire Memcached service to store user registry/session states.
Cassandra Database to store and provide user information to Sprout through Homestead.
Chronos Temporizer service to allow Sprout large-duration events management.

Etcd Distributed Key-value service to share information between two or more cluster elements.

database, and Homestead for multimedia session control and
registry users. To maintain our independence between User
Registry and Multimedia Session Control microservices, we
divide the Sprout, Homestead, and Cassandra components. In
particular, we implement User Registry microservice with UR-
Sprout, URHomestead, and URCassandra. Also, we use MSC-
Sprout, MSCHomestead, and MSCCassandra to implement
Multimedia Session Control microservice. It is essential to
highlight that, URCassandra and MSCCassandra synchronize
their information because MSCSprout manages multimedia
session of users registered by URSprout in URCassandra. To
address this synchronization, we implement MDBU with Etcd
to share users information, forming a cluster of Cassandras.

We use Kubernetes [20] to implement the Enhancing Ele-
ments intended to provide security, reliability, and microser-
vice management (Figure 4). Kubernetes is a widely used
open-source containers orchestrator that manages our CSCF
Microservice Cluster. Moreover, Kubernetes works over one
or more machines that shape a Kubernetes cluster. The Ku-
bernetes cluster consists of one master and several workers,
where the master is in charge of resource management (CPU
and RAM) provided by workers to deploy microservices.
For the Service Discovery implementation, we use a DNS
server named Core-DNS that performs Register&Discovery
functionality. We implement Orchestrator functionalities with

Kube-controller component, which ensures microservices are
running over a worker. Afterward, we use Kube-scheduler
component to implement Infrastructure Manager functionali-
ties, this element tracks available workers resources and allo-
cates microservices in them. We implemented Circuit Breaker
deploying Kubelet over each worker. It ensures microservices
health by checking their state. Finally, we use Kube-proxy
as API Gateway and Load Balancer, Kube-proxy is in each
worker providing external access and distributing the microser-
vice workload.

B. Test Environment

In this section, we present the test environment used to
evaluate the µvIMS prototype. We constructed it over the
University of Cauca datacenter called Telco 2.0. We Assigned
the same number of machines deployed over VMWare 6.0 with
the same amount of resources to two deployments: the µvIMS
prototype, and the vIMS. Table II shows both deployments
resources assignation and their roles in each deployment.
Figure 5 presents the µvIMS deployment that consisted of
seven Virtual Machines (VMs) that shape a Kubernetes cluster.
This cluster is composed of one Kubernetes master and six
Kubernetes workers, and an eighth VM to generate traffic.
Over the six Kubernetes workers, we deployed the CSCF
Microservice Cluster. The Kubernetes master decides in which
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TABLE II: Test environment resources

Machine Resources vIMS µvIMS

Machine1

4 Intel(R) Xeon(R) CPU
E5-2670 2.30 GHz and

16 GB RAM

Ellis Kubernetes
Master

Machine 2 Bono

Kubernetes Workers
(CSCF Microservice

Cluster)

Machine 3 Sprout
Machine 4 Homer
Machine 5 Dime
Machine 6 Vellum

Machine 7
4 Intel(R) Xeon(R) CPU
E5-2670 2.30 GHz and

6 GB RAM
Bind9

Machine 8
4 Intel(R) Xeon(R) CPU
E5-2670 2.30 GHz and

16 GB RAM
SIPp

Kubernetes worker allocates each microservice.
Figure 6 presents the vIMS deployment that includes six

VMs. These VMs deploy each one of Clearwater-over-VMs
components: Ellis, Bono, Sprout, Dime, Homer, and Vellum.
These components need a DNS to communicate between them.
Thus, we implemented it in a seventh VM using Bind9 [21].
Finally, vIMS had an eight VM to generate traffic. In both
deployments, the eight VM used SIPp [22] traffic generator
as a testing tool.
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Fig. 5: Modified Clearwater over Kubernetes (µvIMS)
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Fig. 6: Clearwater over VM (vIMS)

To compare both deployments, we defined a test scenario
using SIPp with three phases: registry of two users, call

establishment and call ended between them. This scenario is
repeated for several pairs of users at the same time, depending
on the Calls Per Second (CPS) defined to test the deployments.
We increased the CPS from 25 to 200 in steps of 25 CPS. Each
test lasted 60 seconds, and we repeated it 32 times to average
the results. We emulated this process in both deployments, and
the metrics that we used to compare them are SCR, resource
usage (i.e., CPU and Memory of the seven VMs that shaped
the deployments), and latency.

C. Results and Analysis

We tested the architecture finer-scalability comparing
µvIMS with vIMS. We started from a µvIMS deployment with
a single instance for each component. Then, we scaled the
most resource-consuming components (i.e., Bono, URSprout,
MSCSprout) to determine the component in which allocate re-
sources to achieve better performance. Then, to determine the
next combinations, we added new instances to the combination
that achieved the best performance. Others combinations were
not included in this analysis because performance does not
improve. Table III shows the number of component instances
deployed in each combination. We ran the test scenario for
each combination and vIMS deployment, and we measured
SCR. After, we measured the µvIMS deployment resource
usage (CPU and RAM) of each combination and comparing it
with vIMS. Also we performed a Latency evaluation of µvIMS
deployment combinations and vIMS, considering the latency
threshold for IMS signaling (i.e., 100 ms) [23]. We aimed
to find a combination that achieved a better SCR without
an excessive increase in resource consumption and latency,
corroborating the feasibility of µvIMS finner-scalability.

TABLE III: µvIMS prototype combinations

Deployment Bono
(Instances)

URSprout
(Instances)

MSCSprout
(Instances)

Combination 1 1 1 1
Combination 2 2 1 1
Combination 3 1 2 1
Combination 4 1 1 2
Combination 5 3 1 1
Combination 6 2 2 1
Combination 7 2 1 2

Figure 7 shows the SCR evaluation results of vIMS and
the seven µvIMS combinations. These results reveal different
facts. First, without scaling components (Combination 1),
µvIMS presents a slightly better SCR than vIMS. Second,
with another Bono instance (Combination 2), the SCR results
are better than Combination 1. As well as, with Combination
2, µvIMS reaches a higher number of SCR than vIMS. Third,
adding another URSprout instance (Combination 3) or another
MSCSprout instance (Combination 4), the results are worse
than vIMS. According to those results, Combination 2 has
better SCR. Thus, in the next combinations, we add other
component instances to Combination 2. Fourth, with three
Bono instances (Combination 5), the results are worse than
Combination 2, but they are better than vIMS. Fifth, With
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two Bono and Two URSprout instances (Combination 6),
the results are better than vIMS, and similar to Combination
2. Finally, with two Bono and Two MSCSprout instances
(Combination 7), the results get worse than Combination 2 and
6, and in higher CPS, they are similar to vIMS. We conclude
that Combination 2 and 6 have higher SCR than vIMS and the
other µvIMS combinations. This corroborates the feasibility
of µvIMS to attend more calls successfully with the available
resources (i.e., the same number of machines with the same
resources), using them effectively.

It is important to highlight that the architecture combination
shows a stable behavior before reaching a maximum SCR.
After a combination reaches its maximum, the curves become
saturated, since the capacities of µvIMS for this combination
are exceeded. Besides, the SCR results show that each com-
bination performance is related to the advantages of a new
instance and the disadvantages of managing this new instance.
For example, the results of Combination 3, and 4 show insights
that adding MSCSprout and URSprout to Combination 1 does
not improve the performance because control traffic is added
and the architecture does not need more instances of those
components but another Bono instance. For that reason, those
combinations present lower SCR than vIMS.
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Figure 8 presents the CPU usage evaluation results of the
seven µvIMS combinations and vIMS. These results reveal
that the difference between scaled combinations of our µvIMS
deployment is negligible. The CPU usage of vIMS for a small
number of CPS is lower than µvIMS. However, the evaluation
shows that for a high number of CPS, the CPU usage of vIMS
increase to a similar level than µvIMS. Furthermore, the SCR
and CPU results show that a higher number of CPS implies
more CPU usage, even if the SCR does not improve. This is
because the deployments try to process more requests but are
not able to do it with the available resources. Consequently,
the request reaches a time out. Regarding the results of SCR
and CPU usage, Combination 2 and 6 achieve a higher SCR
without excessive CPU usage.

Figure 9 shows the RAM results. These results reveal that
the addition of a new component instance implies a growth
in the use of RAM. For example, combinations 2, 3, and

 0

 500

 1000

 1500

 2000

25 50 75 100 125 150 175 200

C
P
U

 (
%

) 
(1

0
0

%
 =

 1
 C

o
re

)

CPS
Combination 1
Combination 2
Combination 3

Combination 4
Combination 5
Combination 6

Combination 7
vIMS

Fig. 8: CPS vs CPU

4 that have one additional instance, use more RAM than
Combination 1. This is because each replica needs additional
RAM for the overall performing. Another important aspect
is that RAM usage does not increase significantly with the
number of CPS in the same combination, meaning that RAM
is not important to attend more users at the same time. In
addition, the regular vIMS implementation uses lower RAM
than µvIMS; this is because of the Enhancing Elements. The
overall results of resource usage reveal that the Enhancing
Elements need a lot of RAM but few CPU to operate. Finally,
in the case of scaled architecture, the addition of new instances
increases notably the RAM usage but not the CPU usage.
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Finally, Figure 10 presents the results of latency evaluation
using a Cumulative Distribution Function (CDF) that groups
the latency obtained from 25 CPS to 200 CPS for vIMS and
each µvIMS combination. The Combination 5, 6, and 7 present
a sightly latency degradation, and they overpass the 100 ms
latency threshold. The Combinations 1, 2, 3, 4, and vIMS
have a negligible latency difference, and they maintain under
the latency threshold. Thus, regarding the overall results, we
conclude that Combination 2 present a sightly SCR improve-
ment with the available resources without affecting latency
as Combination 6. Consequently, we conclude that µvIMS
reaches a higher SCR than vIMS without overpass the latency
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threshold for IMS.
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Finally, making a qualitative comparison, we can state the
following asseverations. First, our architecture design uses
microservices, different than vIMS, whose architecture is
monolithic. Second, µvIMS allows allocating resources in the
microservices related to the traffic, achieving finer-scalability.
Third, with the available resources, µvIMS achieve a higher
SCR than vIMS, demonstrating resource usage efficiency.
Finally, our architecture uses resource efficiently without over-
passing the latency threshold for IMS signaling (i.e., 100 ms).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present µvIMS, an architecture aimed
to provide IMS finer-scalability in 5G networks that suffer
dynamic traffic variations. In order to handle this dynamism,
µvIMS decomposes the CSCF into microservices and uses
Enhancing Elements, improving the available resource usage
and achieving finer-scalability. The main contributions are: a
microservice-based IMS design called µvIMS, a µvIMS proto-
type for the provision of CSCF, and performance comparison
between µvIMS and vIMS using the same number of VMs
with the same amount of resources. This comparison reveals
that our µvIMS reached a higher SCR than vIMS, with similar
resource usage, and without excessive latency increasing. We
corroborated that using microservices µvIMS provides finer-
scalability because the resources are allocated in the specific
IMS function necessary to handle the traffic.

As future works, we are interested in analyzing the perform-
ing of µvIMS with a variable number of Kubernetes workers,
and the impact of additional traffic introduced by Enhancing
Elements. Furthermore, we plan to add an auto-scalability
mechanism that allows µvIMS to adapt to user traffic and
analyze the performing, latency, and resource usage.
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